Як властивість розподілу використовується для спрощення алгебраїчного виразу?

2024 Від admin

В алгебрі ми використовуємо властивість розподілу to усуньте дужки, оскільки ми спрощуємо вирази. Наприклад, якщо нас попросять спростити вираз 3 (x + 4), порядок операцій каже, що спочатку потрібно працювати в дужках. Але ми не можемо додати x і 4, оскільки вони не схожі на доданки.

Крок 1. Визначте значення поза дужками. Це значення, яке буде розподілено між іншими членами виразу. Крок 2. Запишіть вираз як суму двох добутків без дужок. Крок 3. Спростіть вираз, обчисливши будь-яке множення у виразі з кроку 2.

Спрощення має на увазі об’єднати подібні терміни та звести вираз до найпростішої форми. Це не тільки полегшує обчислення, але й допомагає нам ідентифікувати приховані закономірності та зв’язки. Наприклад, якщо у нас є вираз «3x + 2x», ми можемо поєднати терміни «3x» і «2x», щоб отримати «5x».

Розподільну властивість множення над додаванням можна використовувати, коли ви множите число на суму. Наприклад, Припустімо, ви хочете помножити 3 на суму 10 + 2. 3(10 + 2) = ? Згідно з цією властивістю, ви можете складати числа, а потім множити на 3.

Про це нам говорить властивість розподілу Множення числа на суму дорівнює сумі множень цього числа на кожен із доданків..

Отже, ми можемо використати властивість розподілу, щоб переписати вираз у вигляді A(B + C) множення A на кожен із членів B + C, а потім додавання результатів . Наприклад, припустимо, що ми хочемо переписати вираз 2(x + 5). Ми можемо використати нашу властивість розподілу так: 2(x + 5) = 2 ⋅ x + 2 ⋅ 5 = 2x + 10.

Спрощення алгебраїчного виразу означає запис виразу найпростішим можливим способом видалення дужок і поєднання подібних термінів . Наприклад, щоб спростити 3x + 6x + 9x, додайте подібні члени: 3x + 6x + 9x = 18x.